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a b s t r a c t  
 
This paper introduces the Two-Echelon Inventory-Routing Problem with Fleet Management. This prob-lem arises under a 

two-echelon vendor-managed inventory system when a company must make vehicle routing and inventory management 

decisions, while renting a fleet subject to short- and mid-term agree-ments. Different chemical products are transported 

contaminating the vehicles that may require cleaning activities. Pickups of input take place in the first echelon, and the final 

product deliveries are performed in the second echelon. Based on a real-life case in the petrochemical industry, we introduce a 

formula-tion that takes into account vehicle rentals, cleanings, transportation, inventory management, and vehicle returns 

decisions. We design a branch-and-cut algorithm to solve it and also propose a matheuristic, in which vehicle routes are 

handled by an adaptive large neighborhood mechanism, while input pick-ups, product deliveries, and fleet planning are 

performed by solving several subproblems to optimality. Moreover, we introduce a hybrid parallel framework, combining our 

matheuristic and the branch-and-cut algorithm in order to solve very large instances exactly. We validate our methods by 

solving a set of instances of the two-echelon multi-depot inventory-routing problem from the literature, obtaining new best 

solutions for all instances. We have introduced a set of instances for this rich and new problem, and performed an extensive 

assessment of our methods. The results provide interesting data about the supply chain structure. 

1. Introduction 

 
Modern supply chains require high level of coordination and 

synchronization of their decisions (Chabot et al., 2018), and these can help 

decrease logistics costs and improve vendor-customer re-lationships (Yuliang 

and Dresner, 2008). In this context, Vendor-Managed Inventory (VMI) 

systems configure a collaborative prac-tice between suppliers and customers 

Andersson et al. (2010). Un-der the VMI paradigm, suppliers control the 

inventory of the cus-tomers, deciding when to serve them and how much to 

deliver. According to Zhao et al. (2010), the VMI practice is mutually ben-

eficial, since customers do not have to spend resources to con-trol their 

inventories and to manage orders, while suppliers im-prove their logistics 

activities coordination, particularly on delivery routes composition. 
 
 

 

To operate a VMI strategy one must solve an Inventory-Routing Problem 

(IRP), which integrates the inventory management and the multi-period 

vehicle routing problem into the same framework. Since it was introduced by 

Bell et al. (1983), a wide range of IRP variants have been proposed, involving 

strategic, tactical and op-erational criteria (see Coelho et al., 2014). Despite 

these studies, two simplifications are common in road-based logistics. First, 

the supply chain is usually simplified into one-echelon only and in-volves one 

plant serving multiple customers, known as a one-to-many structure (Coelho 

et al., 2014). Second, fleet decisions are of-ten taken on a tactical perspective, 

like sizing and mix (Andersson et al., 2010). 

 

 

Fleet management is one of the most expensive activities in the logistics 

industry (Shintani et al., 2010). Regarding routing prob-lems, the main 

concern lies on the strategical and tactical level, with long- and medium-term 

impacts, as the fleet sizing, when an unlimited number of homogeneous 

vehicles are considered, or to the fleet composition, when vehicles with 

different capaci-ties are available to perform deliveries (Bielli et al., 2011), 

respec-tively. Few studies address operational level issues, such as main- 
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tenance, which impacts the short-term vehicle availability, and in the 

following, we review the relevant literature. Fagerholt and Lindstad (2007) 

present an interactive optimization-based decision support system for ship 

routing and scheduling, where a clean-ing procedure can be taken into 

account when needed. Hvattum et al. (2009) describe a similar approach for a 

tank allocation prob-lem arising in the shipping of bulk oil and chemical 

products by tanker ships. In road-based transportation, the majority of stud-ies 

consider multi-compartment vehicles, as in Oppen et al. (2010), which deal 

with live animals from farms to slaughterhouses, where vehicle disinfection is 

performed between consecutive tours. More recently, Lahyani et al. (2015) 

address a multi-product, multi-period routing problem arising in the collection 

of olive oil in Tunisia. Due to the difference among olive oil grades, a 

compart-ment may require a cleaning activity. 

 

 

While fleet management in an integrated context is a com-plex task, 

outsourced fleet employment enables companies to fo-cus their efforts on 

their core competence. According to Windle et al. (1999), the outsourcing of 

integrated logistics functions al-lows companies to reduce their costs and 

improve the customer service level. 

 
When more echelons are considered, the integrated sup-ply chain 

management becomes more complex, and the decision-making process is 

more difficult. Recently, Guimarães et al. (2019) introduced the two-echelon 

multi-depot IRP (2E-MDIRP), inspired by a VMI system implementation of a 

real fuel distribution problem in South America. In that case, plants in the 

middle layer control the gasoline inventory of a set of gas stations, besides 

their own inventory of input (ethanol) picked up from supplying facilities. 

The aim is to minimize pickups and deliveries routing costs, in addition to 

inventories costs. Despite the costs involved, the authors assume that a fleet 

of vehicles is available at each plant, omitting any cost for the use and 

maintenance of the vehicles. 

 

 
In order to take advantage from the fleet outsourcing, to enable companies 

to focus on their core business, and to consider a more realistic and integrated 

scenario, we extend the 2E-MDIRP, incorpo-rating fleet management 

decisions. We consider a two-echelon (2E) supply chain, in which the plants 

in the middle layer are responsi-ble for managing inputs pickups from 

suppliers in the first echelon, and the product deliveries to customers in the 

second one. Plants operate with a non-compartmentalized outsourced fleet, 

which must be rented. Cleaning activities must take place whenever the 

vehicle exchanges the loaded product or when it is returned to the rental 

company. In addition to traditional transportation and inventory decisions, 

plants are in charge of fleet planning, includ-ing renting, cleaning, and 

returning vehicles. These aspects define an unparalleled problem in the 

literature, which we call the 2E-IRP with fleet management (2E-IRPFM). The 

aim is to minimize fleet management (rent and cleaning), routing (pickups of 

the in-put and deliveries of gasoline blend) and inventories (input and final 

product) costs, avoiding stock-outs over a planning horizon. We also perform 

extensive computational experiments on a new set of 2E-IRPFM instances, 

inspired by a real-life case. We design a set of performance indicators and 

derive many managerial insights for this rich and new problem. 

 
 
 

The scientific contributions of this work are: 

 

 
1. We are the first to consider an IRP while managing fleet deci-sions, not 

limited to size and mix, but also taking into account rentals, cleanings, and 

returns. These decisions involve opera-tional tasks related to the 

outsourced fleet management, allow-ing companies to plan its short-term 

activities in a more in-tegrated way. Moreover, our approach is more 

realistic when compared to the classical IRP, since the rental and cleaning 

de- 

 
cisions impact the operational costs, and are frequently ignored in multi-

period routing problems;  
2. We describe, model, solve, and compare the two classic in-ventory 

policies (detailed below) with different fleet manage-ment costs. We 

analyze the performance of these configurations based on their partial 

costs;  
3. We design a branch-and-cut algorithm (B&C) to solve the 2E-  

IRPFM exactly. As the problem is N P-hard, the B&C is efficient to solve 

only small instances. In this sense, we also design a matheuristic to 

provide better results for large instances. Fur-thermore, in order to handle 

large instances exactly, we em-ploy parallel computing techniques 

proposing a hybrid exact al-gorithm, combining the matheuristic 

algorithm with the B&C scheme. This hybridization takes advantages 

from both original methods, overcoming each one individually; 

 

4. We validate our algorithms on a special case of our prob-lem from the 

literature, proving optimality for several open in-stances and providing 

best known solutions to all of them. 

 
The remainder of the paper is organized as follows. In Section 2, we 

formally describe the 2E-IRPFM, and propose a mixed-integer linear 

programming (MILP) formulation in Section 3, where we present sets of new 

and existing valid inequalities. The B&C al-gorithm is detailed in Section 4. 

In Section 5, we describe the matheuristic algorithm proposed to solve the 2E-

IRPFM, while Section 6 presents the hybrid parallel exact approach. In 

Section 7, we discuss the results of extensive computational experiments per-

formed to assess the quality of the algorithms, and we also derive business 

insights based on the results. Conclusions are presented in Section 8. 

 

 

 

2. Problem description 

 

The 2E-IRPFM is defined over an undirected graph G = (V, E ), where 

the vertex set V represents the union of the sets F of suppliers, P of plants, 

and C of customers, while E is the set of edges. The first echelon links 

suppliers and plants and it is  
defined  by subgraph G =(V,E ), where  V = F ∪ P  and  E = 
    = (V  E )  

(u, v) : u, v ∈ V , u ∈ F ∧ v ∈ P . The second echelon links plants 

and customers and is defined by subgraph G  ,  with 
V  = P ∪ C and E  = (u, v) : u, v ∈ V ∧ u, vP, u < v , in which 

V=V ∪V and E = E ∪ E . A non-negative cost cuv  is associated 

with each edge (u, v) ∈ E.  
The planning horizon is defined over a set T = {1, . . . , p} of pe-riods. In 

each period t, each plant j ∈ P is allowed to rent up to |K| of homogeneous 

vehicles of capacity Q at rental cost fw per vehicle per period. Each vehicle 

can be used to pick up a certain amount of input (α) from a supplier, and/or to 

deliver a certain amount of final product (β) to customers. Once a customer is 

visited and one must determine the quantity to be delivered, one of two 

policies are often applied. Under the maximum level (ML) policy, the plant is 

free to decide how much to deliver to a customer, as long as the inventory 

capacity is not exceeded. The order-up-to (OU) policy fills the customer’s 

inventory capacity whenever a delivery occurs (Archetti et al., 2007). 

 

 

After performing a pickup of α (delivery of β), the vehicle re-mains 

contaminated with α (β). Before a new trip with a different product, each 
vehicle must undergo a chemical cleaning procedure, incurring in cleaning 

cost fs. This can occur in the same period, if 

α is picked up at the beginning of t, and β is delivered at the end  
of t by the same vehicle k, or in different periods, if the vehicle re-mains at 

the plant. In this case, fw is due for each additional period in which the vehicle 

remains at the plant. A vehicle contaminated with α in t can perform a new 
pickup in t , t > t without going through chemical cleaning, since it does not 

perform any delivery of β between [t, t ]. The same idea works for β. As a 
vehicle re-
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mains contaminated with the last load, when a plant decides to return it, a 

cleaning cost fs is due as every vehicle must be cleaned before being returned. 

 
Each unit of β requires a certain quantity ϕ of α in its blend, and the 

demand dl
t
 of each customer l in each period t is known a priori. Plant j has a 

maximum inventory capacity Uj for α, and its level cannot be lower than Lj. 

One unit of α incurs an inventory holding cost hj per period. Likewise, Ul 

and Ll denote the maxi-mum and minimum inventory levels for β at customer 

l, with unit holding cost hl. The total availability of α at all suppliers is not 

constrained. However, each supplier i disposes of i units for the whole 

planning horizon, according to a pre-established contract with plants. In t = 0, 

there are no rented vehicles at the plants, and initial inventory levels I
0

j and 

Il
0
 are known at each plant j and each customer l.  
Regarding the timing of the activities, we assume that α is al-ways picked 

up at the beginning of a period if a pickup is needed. When a delivery is also 

required, it must be scheduled after all the pickups had been performed. That 

is mandatory to enable the blending process and to produce β in the same 

period. A vehicle must be clean before its return to the rental company at the 

end of a period. 

 
We justify the sequencing of these decision based on real data from our 

partner, within a daily journey of 14 h. From 5 to 6 a.m. the vehicle is 

cleaned, when it remained contaminated at plant, or it is taken from the rental 

company. Pickups of α occur from 6 to 9 a.m. Unloading of α, the blending 

process and the vehicle loading with β is performed from 9 to 11 a.m. Since 

the vehicle cleaning is an independent task, its can be done after the 

unloading, while α and β are being blended. Deliveries routes last around 6 

h, starting at 11 and ending at 17 h. If the vehicle is returned in the same 

period, it is cleaned from 17 to 18 h, and returned before 19 h to the rental 

company. 

 
The objective of the 2E-IRPFM is to minimize the total inven-tory, 

transportation, and fleet management cost, determining, for each plant: 

 

• When, how much and from which supplier to pickup α; 
 

• When and how much to deliver β to a customer; 
 

• When and how many vehicles to rent, to clean, to keep, and to return; 

 

• How to combine customer deliveries into vehicle routes. 
 

A customer may be visited at most by one vehicle per pe-riod. Likewise, a 

plant is allowed to pick up α from one sup-plier using one vehicle in a period. 

Each input pickup or delivery route must end at the same starting plant. As 

the fleet is non-compartmentalized, a pickup and a delivery cannot be 

combined in the same tour. Thus, after collecting α from a supplier, the ve-

hicle needs to return to its original plant and will only be able to perform a 

delivery route if it is properly cleaned. 

 

3. Mathematical formulation for the 2E-IRPFM 

 
We now present the mathematical formulation for the 2E-IRPFM. For 

each plant j one must determine the quantity of prod-uct q
kt

jl delivered to 

customer l and the total amount of input ri
kt

j picked up from supplier i, using 

vehicle k in period t. At the end of each period, the inventory level of β at 

customer l is given by Il
t
 , while the inventory level of α at plant j is I

t
j . The 

remaining variables used in our model are: 
 

• Wj
kt

 = 1 if vehicle k is rented by plant j in period t, 0 otherwise; 
 

• R
kt

j = 1 if vehicle k rented by plant j is returned in period t, 0 otherwise; 

 

• Xi
kt

j = 1 if vehicle k rented by plant j picks up α from supplier i in period 

t, 0 otherwise; 

 

• Yjl
kt

 = 1 if vehicle k rented by plant j delivers β to customer l in period t, 

0 otherwise;  

• y
k
u vjt

 = 1 if vehicle k rented by plant j travels between customers u and 
v, u < v, in period t, 0 otherwise; 

• y
k
jl

jt
 ∈ {0, 1, 2}. When y

k
jl

jt
 = 1, vehicle k rented by plant j trav-els 

directly from plant j to customer l in period t. If y
k
jl

jt
 = 2, a round trip is 

defined, 0 otherwise; 
 

• Z
α

j
,kt

 = 1 if vehicle k rented by plant j ends period t contami-nated with 
α, 0 otherwise; 

• Z
β

j
,kt

 = 1 if vehicle k rented by plant j ends period t contami-nated with 
β, 0 otherwise; 

• S
α

j
,kt

 = 1 if vehicle k rented by plant j contaminated with β is cleaned to 

pickup α in period t, 0 otherwise;  

• S
β

j
,kt

 = 1 if vehicle k rented by plant j contaminated with α is cleaned to 

deliver β in period t, 0 otherwise; 

• S
R

j
,kt

 = 1 if vehicle k rented by plant j, contaminated with α or β, is 

cleaned to be returned in period t, 0 otherwise;  

• S
kt

j : total number of cleanings of vehicle k rented by plant j in period t. 

 

In addition, we also define variable Xj
kt

j = 1 to indicate that ve-hicle k, 

rented by plant j, performs a pickup in t, 0 otherwise. Equivalently, Yj
kt

j = 1 

works for a delivery, 0 otherwise. Without loss of generality, we assume that 

no vehicle is housed at plants in t = 0, i.e., Wj
k0

, R
k
j
0
, Z

α
j
,k0

 and Z
β

j
,k0

 are 

set to zero.  
A suitable representation of the 2E-IRPFM is shown on Fig. 1. 

Considering two consecutive periods, t and t + 1, we depict the sequence of 

decisions for a given vehicle k, rented by plant j. In order to simplify the 
example, indices k and j are omitted on the variables. First, the vehicle is 

rented in period t, which obviously implies in W t
 = 1. Then, this vehicle 

performs a pickup, becom-ing contaminated with α. Before it can be assigned 

to a delivery, a cleaning is carried out, i.e., S
β,t

 = 1. The vehicle then leaves 

to the plant contaminated with β, and remains there in the following period, 

yielding Z
β,t

 = 1 and an additional lease with W t+1
 = 1. At the beginning of 

t + 1, the vehicle is cleaned to perform a new in-put pickup (S
α,t+1

 = 1). 

After returning to the plant, one last clean-ing is performed (S
R,t+1

 = 1), and 

the vehicle is returned at the end of t + 1.  
The 2E-IRPFM is formulated by (1)–(42). 

 min t   j    k  fwWj
kt

 + j   k    fsS
kt

j 
+

 
j  h j I

t
j + l  hl Il

t 

              
   ∈T  ∈P  ∈K     ∈P  ∈K     ∈P   ∈C  
  + k   (i, j)     2ci j Xi

kt
j 

+
 j   k    (u,v)  cuvyuk vjt   (1) 

                 

    ∈K   
∈

E      ∈P  ∈K   ∈E         

subject to                             
               

i ∈ F 

         

t∈T j∈P k∈K 

ri
kt

j ≤  i                (2) 

 
 

 
               

  

It−1 

  

ϕqkt 

          

It 

= + 
      rkt 

− 
      j 

∈ P 
, t 

∈ T 
  (3) 

j j         i j 

l∈C k∈K 

    jl        

      i∈F k∈K                  
  

It−1 

                      

It 
 

+ 
      qkt 

− 
dt 

  l 
∈ C 

, t 
∈ T 

      (4) 
l =  l         jl l             

      j∈P k∈K                      

Ll ≤ Il
t 
≤ Ul     l ∈ V , t ∈ T                (5) 

 
Xi

kt
j ≤ 1 

   
j ∈ P, t ∈ T 

             
(6) 

k∈K i∈F 

                

                               

 rkt 

≤ 
U 

j − 
It−1 j 

∈ P 
, t 
∈ T 

        (7) 
     i j   j                

i∈F k∈K 
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Fig. 1. Graphical representation of the 2E-IRPFM. 

 

 

ri
kt

j ≤ Q Xi
kt

j   j ∈ P, i ∈ F, k ∈ K, t ∈ T (8) Yj
kt

j ≤ Wj
kt  j ∈ P, k ∈ K, t ∈ T        (17) 

 

q
kt

jl  ≤ Ul − Il
t−1 

  l ∈ C, t ∈ T (9) R
kt

j ≤ Wj
kt 

 j ∈ P, k ∈ K, t ∈ T        (18) 

                                            
j∈P k∈K                                             

qkt 
 

UlY kt  
l 

  
, j 

   
, k 

   
, t 

 
(10) 

Zα,k,t−1 

≤ 
W kt   j 

∈ P 
, k 

∈ K 
, t 
∈ T 

     (19) 

≤ 
 

∈ C ∈ P ∈ K ∈ T 
j  j              

 jl  jl                                 

 

qkt  QY kt 
  j   , k   , t   (11) Zβj

,
k
,
t−1 ≤ Wjkt   j ∈ P, k ∈ K, t ∈ T      (20) 

jl ≤ 
   

j j 
   

∈ P 
  

∈K  ∈T 
                          

l∈C 

                                  

     

≤ 1 

  l ∈ C, t ∈ 

T 

      

Z
α

j
,kt

 + Z
β

j 
,kt + Rktj = Wj

kt 

  

j ∈ P, k ∈ K, t ∈ T (21) 

 

Yjl
kt 

       (12)   

                                            
j∈P k∈K                    kt  kt  kt   α,kt    

j ∈ P, k ∈ K, t ∈ T 

 

(22)   yu
k vjt

 +  yv
k ujt = 2Yj

kt
v   v ∈ V , j ∈ P, k ∈ K, t ∈ T (13) 

X
j j − Yj j  − R j  ≤ Z j      

                   

Zα,k,t−1 

   

Zβ,kt 

  j  

Zα,kt 

           

u       u                −  − Rkt ≤   j ∈ P , k ∈ K , t ∈ T (23) 
u<v     v<u                j  j     j         

 ∈V       ∈V                                        
 

 

 ylu
kjt ≤   Yjl

kt 
− Yjm

kt 
     Yj

kt
j − R

kt
j ≤ Z

β
j
,kt  j ∈ P, k ∈ K, t ∈ T    (24) 

                                         
 l∈S u∈Sl<u    l∈S                                     

 
S ⊆ C, |S| ≥ 2, m ∈ S, j ∈ P, k ∈ K, t ∈ T (14) Zβj,k,t−1 − Zαj,kt  − R

kt
j ≤ Z

β
j
,kt   j ∈ P, k ∈ K, t ∈ T (25) 

Xi
kt

j 
= 

 Xj
kt

j  j 
∈ P 

, k 
∈ K 

, t 
∈ T 

 (15) W k,t−1 

− 
Rk,t−1 

≤ 
W kt    j 

∈ P 
, k 
∈ K 

, t 
∈ T 

 (26) 

i∈F 
              j   j   j          
                                              

Xj
kt

j ≤ Wj
kt   j ∈ P, k ∈ K, t ∈ T   (16) Xj

kt
j + Z

β
j ,k,t−1 − 1 ≤ Sαj,kt   j ∈ P, k ∈ K, t ∈ T (27) 
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Zβj,k,t−1 + Zαj,kt − 1 ≤ Sαj,kt  j ∈ P, k ∈ K, t ∈ T 

Yj
kt

j + Xj
kt

j − 1 ≤ S
β

j
,kt 

j ∈ P, k ∈ K, t ∈ T   

Y kt Zα,k,t−1 

− 

1 

≤ 

Sβ,kt j 

∈ P 

, k 

∈ K 

, t 

∈ T j j  + 
 j    j      

Zα,k,t−1 

+ 
Zβ,kt 

− 
1 

≤ 
Sβ,kt  j 

∈ P 
, k 

∈ K 
, t 
∈ T j  j   j       

R
kt

j ≤ S
R

j
,kt   j ∈ P, k ∈ K, t ∈ T         

S
α

j
,kt

 + S
β

j
,kt

 + S
R

j
,kt

 = S
kt

j j ∈ P, k ∈ K, t ∈ T 

I
t
j , ri

kt
j ≥ 0  i ∈ F, j ∈ P, k ∈ K, t ∈ T      

Il
t
 , q

kt
jl ≥ 0  l ∈ C, j ∈ P, k ∈ K, t ∈ T      

 

Y j
kt

j , S
R

j
,kt

 , S
β

j
,kt

 , S
α

j
,kt

 , R
kt

j , Z
β

j
,kt

 , Z
α

j
,kt

 , Wj
kt

 ∈ {0, 1} 
 

j ∈ P, k ∈ K, t ∈ T 

 

S
kt

j ∈ {0, 1, 2, 3} j ∈ P, k ∈ K, t ∈ T 

 

Xi
kt

j ∈ {0, 1} i ∈ F, j ∈ P, k ∈ K, t ∈ T 

 

Xj
kt

j ∈ {0, 1}     j ∈ P, k ∈ K, t ∈ T 

 

Y jl
kt

 ∈ {0, 1}     l ∈ C, j ∈ P, k ∈ K, t ∈ T 

 

y
k
jl

jt
 ∈ {0, 1, 2} l ∈ C, j ∈ P, k ∈ K, t ∈ T 

 
(18) impose that only rented vehicles can be returned. Constraints  

(28) (19) and (20) impose that if a vehicle remains contaminated at the plant, it 
must be rented by one more period. Constraints (21) de-fine mutually 
exclusive conditions for a vehicle at the end of t: 

(29) 

contaminated with α, contaminated with β, or returned to the rental 
company. In the last case, the vehicle must be cleaned. Con-  

(30) straints (22) establish the first condition for a vehicle that remains at the plant 

contaminated with α, which occurs when it performs a pickup, and does not 
perform a delivery and/or is returned in  

(31) the same period. The second condition is assured by constraints (23), in which a vehicle 
finishes contaminated with α in period  

(32) t − 1 and remains at the plant without performing a delivery in t. Analogously, a 
vehicle remains contaminated with β if it performs a delivery in period t and does 
not return to the rental company  

(33) in the same period, which is imposed by constraints (24). Besides that, constraints (25) 
describe the second condition for a contami-  

(34) nation with β, that occurs when the vehicle remains contaminated from 
previous period (t − 1), neither performing a pickup or being returned to the 
rental company in t. Likewise, constraints (26) en-  

(35) sure vehicle flow conservation. Constraints (27) and (28) encom-pass all the 
requirements to clean up the vehicle, in order to allow a pickup. In particular, 
a vehicle must be cleaned if it was contam-inated with β in t − 1, and it is 
scheduled to pickup α in t, which 

(36) is handled by (27). Another situation occurs whenever a vehicle finishes 
contaminated with different products in two consecutive periods (β in t − 1 
and α in t). In this case, constraints (28) impose  

(37) a clean up in order to enable a pickup in t. Constraints (29) ensure a clean up whenever 
the same vehicle performs a pickup and a 

(38) delivery in t, while (30) consider a similar case, when the vehicle  

is already contaminated with α in t − 1 and carry out a delivery 
of β in t. Constraints (31) work for β as (28) work for α. Con-  

(39) straints (32) ensure that the vehicle is clean when returned, while constraints (33) 
compute the total number of cleanings. Lastly, con- 

(40) straints (34)–(42) define the variables domain. 
 

The order-up-to level inventory policy (OU) links the decision of when 

and how much to serve a customer. Thereby, whenever 
 
(41) a plant performs a delivery, the total quantity delivered must be equal to the customer 

inventory availability:
 

y
k
u vjt

 ∈ {0, 1} u, v ∈ C, u < v, j ∈ P, k ∈ K, t ∈ T . (42) 
 

The objective function (1) minimizes the total cost, given by six terms: 

fleet rental, fleet cleaning, input inventory at the plants, final product 

inventory at the customers, pickup transportation, and delivery transportation 

costs. Constraints (2) bound the in-put availability, according to the contract 

between suppliers and plants. Constraints (3)–(5) balance the flow and impose 

inventory bounds. Constraints (6) allow at most one pickup per plant per 

period, while constraints (7) ensure the ML inventory policy for 

 

α . Constraints (8) guarantee that the vehicle capacity is not ex-ceeded. The 

ML inventory policy for β is formulated by (9). Con-straints (10) link 

assignment variables with the quantity delivered. Constraints (11) guarantee 

that total delivery quantity does not ex-ceed the vehicle capacity, while (12) 

avoid split deliveries. Con-straints (13) ensure the linking conditions: when a 

node l is vis-ited, it should have exactly one incoming edge and one outgoing 

edge. In particular, when a vehicle route contains only one cus- 

 

tomer, obviously visited in a round trip, only one routing vari-able y
k
jl

jt
 = 2 is 

sufficient to represent both incoming and outgo-  
ing edges, reducing the total number of decision variables in the model. 

Constraints (14) eliminate subtours, by requiring for each proper and 

nonempty subset S of C, the total number of edges traveled by vehicle k from 

plant j between the nodes of S must be at most |S| − 1, while constraints (15) 

link a pickup with the as-signed vehicle. Constraints (16)–(33) formulate the 

fleet rental and return. In particular, constraints (16) and (17) require a vehicle 

to be rented if it is used to either pickup α or deliver β. Constraints 

 
 

   

qjl
kt

 ≥ Ul Yjl
kt

 − Il
t−1

l ∈ C, t ∈ T . (43) 

j∈P k∈K j∈P k∈K  
 
3.1. Valid inequalities 

 

In order to strengthen the formulation and improve the qual-ity of its dual 

bound, we also present a set of well-known valid inequalities from basic IRPs 

(Archetti et al., 2007; Bertazzi et al., 2019; Coelho and Laporte, 2014). These 

are described next. 
 

y
k
jl

jt
 ≤ 2Yjl

kt 
l ∈ C, j ∈ P, k ∈ K, t ∈ T (44) 

yul
kjt

 ≤ Yjl
kt 

u, l ∈ C, u < l, j ∈ P, k ∈ K, t ∈ T (45) 

ylu
kjt

 ≤ Yjl
kt 

u, l ∈ C, l < u, j ∈ P, k ∈ K, t ∈ T (46) 

Yjl
kt

 ≤ Yj
kt

j l ∈ C, j ∈ P, k ∈ K, t ∈ T . (47)  
Inequalities (44) strengthen the case if customer l is served in a direct 

delivery by vehicle k rented by plant j in period t. Sim-ilarly, inequalities (45) 

and (46) work for customer l if it is pre-ceded or succeeded by another 

customer u, respectively. Inequali-ties (47) ensure that customer l is served by 

vehicle k starting from plant j in period t, only if the vehicle is assigned for 

that plant. 
 

We also consider inequalities (48)–(50) adapted by Guimarães et al. 

(2019) for the multi-depot multi-vehicle IRP, which is useful to determine the 

minimum number of deliveries to avoid stock-out 
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at customer l on the range [t1, t2]. Particularly, the right-hand side (RHS) of 

inequalities (48) is a delivery lower bound. If the demand during [t1, t2] is 
greater than the maximum possible inventory held, regardless of the current 

inventory level, the customer must be served in [t1, t2]. The minimum number 

of deliveries depends on the capacities Q and Ul. Suppose [t1 = 1, t2 = 4], a 

customer l with dl
1
 = dl

2
 = dl

3
 = dl

4
 = 50, Il

0
 = 50, Ul = 150 and Q = 100. 

The  
RHS of (48) is 200−100 

= 
1, thus at least one delivery must be 

 min{100,150}  
 avoid s tock-out to the cus tome r. The nu merator can  

performed to    
be tightened by considering the current inventory level instead of the 

customer capacity, according to the RHS of (49). In this case, the numerator 

contains a decision variable and because of that, the RHS cannot be rounded 

up. Based on the previous example, 
the RHS of (48) is 200−50 

= 
1.5, which is stronger than before. 

 min{100,150}   
As pointed by Coelho and Laporte (2014), these inequalities can be written in 

a different way. If the inventory held at the beginning of the interval [t1, t2] is 

sufficient to fulfill its accumulated demand, 
then no visit to customer l is required, i.e., if t2 t t1 −1 , then t=t1 

d
l ≥ I l  

j∈P k∈K t=t1 Yjl  ≥ 1. On the other hand,      

  t2 kt if the inventory is not 
     
sufficient to meet future demands, then a visit must take place, as shown by 
inequalities (50). Guimarães et al. (2019) also pro-posed inequalities (51), 

which identify, based on the same idea, the smallest range [t1, t2] for which a 

plant j must perform a pickup. 

 

end of period ζ ∈ T . The residual demands (d
¯

l
ζ
 ) define the demand not 

met by the initial inventory: 
d

l = max  0, dl
ζ − 

Il0,ζ −1 otherwise ∀ζ ∈ T . (55) 

¯ζ  max  0, dl
1 

Il
0 

if ζ = 1  

    −   
In addition, the same authors combine the maximum inventory  

level (Ul), the demand (dl
ζ
 ) and the residual demand (d

¯
l
ζ
 ) in ζ ∈ T for 

each customer l, defining the following set Plt
+ , containing all periods in 

which a sub-delivery of β for a customer l in period t can be used, either to 

satisfy the current demand or to be held in inventory for future periods. 

t > 0 ∪ ¯ζ > 0 and ζ −1 t < Ul 
Plt

+  =   t|d
¯

l ζ > t|dl t =t dl 

        
∪  p dl

t  < Ul   .     (56) 
p + 1| t =t      

              
Finally, let P

− 

= 
t 
∈ T | 

ζ 
∈ 

P
+ 

 be the set of periods for which 
  lζ   lt   

ζ ∈ T 

. 

a delivery can be 
scheduled to satis fy the demand of l in  

         
Desaulniers et al. (2015) propose the following valid inequalities for the IRP, 

derived from the minimum number of sub-deliveries per demand. We adapt 

them to the 2E-IRPFM, as follows: 
 

t2  

Yjl
kt

 ≥  
j∈P k∈K t=t1 

 
t2  

Yjl
kt

 ≥  
j∈P k∈K t=t1 

 
t2  

Yjl
kt

 ≥  
j∈P k∈K t=t1 

 
 

  t2 {  t l }     

   t=t1 
d
l − Ul   

   min Q, U   

   t2 t  t1 −1 
 min{Q, Ul }   

   t=t1 dl  − Il   

   t2 t  t1 −1 
  t2 t  d

t 
  

   t=t1 dl  − Il   

    t      

   = 1 l   

 
 

l ∈ C, t1, t2 ∈ T , t2 > t1 (48) 

l ∈ C, t1, t2 ∈ T , t2 > t1 (49) 

l ∈ C, t1, t2 ∈ T , t2 > t1 (50) 

 

Yjl
kt

 ≥ 1, l ∈ C, ζ ∈ T , with Pl
−
ζ = ∅. (57) 

j∈P k∈K t∈Pl
−
ζ 

 
Lefever (2018) propose a set of valid inequalities to the IRP with 

transshipment (IRPT), useful to bound the minimum number of delivery 

routes along the planning horizon T . We adapt these in-equalities to the 2E-

IRPFM, as: 
jk t  1 ≥     ∈ T  
 ζ Y kt    ζ d

t . (58) 
    l∈Ct=1 l   ,  ζ  

         

∈P ∈K  = 

j j   Q      
        

         

   t2        
t
2  kt t1 −1  

          j 

− Ij 
 

    Xi
kt

j ≥ l∈Ck∈Kt=t1 (ϕ)q
 jl  

            (51) 
  j ∈ P, t1, t 2 ∈ T , t2 > t1 .     

 
i∈F k∈K t=t1 

     min Q, U    
            

  Based on the features of the 2E-IRPFM, we introduce the fol- 

lowing new inequalities.       

   qkt 
≤ 

    
∈ P 

 
∈ T 

  
 

jl 
 

W kt  j , t 
 

(52)  l∈Ck∈K       

        

j 
      

  Q     

k∈K 

      
             

 
 

 
         

Yj
kt

j ≤ 

    

j ∈ P, t ∈ T 

    

k∈K 

 Wj
kt      (53) 

 k∈K            

Yj
kt

j + Xj
kt

j ≤ Wj
kt 

+ S
β

j
,kt 

j ∈ P, k ∈ K, t ∈ T . (54) 
 

The left hand side of (52) computes the minimum number of vehicles 

required, based on the total delivery amount scheduled in t. Thus, the right 

hand side sets the lower bound for the number of rented vehicles per plant. 

Equivalently, this lower bound is also obtained according to the number of 

vehicles scheduled for deliv-eries, departing from each plant, as presented by 

inequalities (53). Finally, inequalities (54) ensure that if vehicle k, housed at 

plant j, is assigned to a pick up and a delivery in period t, then this vehicle 

must be rented and cleaned. 

 

It is known that the first-in, first-out rule can be associated with an 

optimal solution of the IRP. Desaulniers et al. (2015) then  
0,ζ 0 ζ t 

 introduce the following notation. Let Il = max  0, Il −    t=1 dl 
be the remaining quantity of initial inventory for customer l at the 

Finally, to strengthen the IRP inventory management compo-nent 

formulation, Lefever et al. (2018) employ a remaining quan-tity to restrict the 

range of continuous variables Il
t
 and q

kt
jl . These improved bounds can be 

tightened as follows. 
 

Il
t
 ≥ Il

0,t
 , l ∈ C, t ∈ T (59) 

q
kt

jl ≤ Ul − Il
0,t

 , j ∈ P, l ∈ C, k ∈ K, t ∈ T . (60) 
 

4. Branch-and-cut algorithm 

 

Due to their combinatorial features, the number of subtour elimination 

constraints (SEC) (14) is too large, and their full enu-meration is 

impracticable. To overcome this limitation, these con-straints must be 

dynamically generated along the search process. We use an exact approach, 

known as branch-and-cut, to solve the model presented in Section 3, where 

SEC are added to the search tree whenever subtours are found at the current 

solution.  
At the beginning of the search, all valid inequalities are gen-erated and 

added in the root node. Whenever a node of the search tree is solved by a MIP 

solver, a search for violated SEC is performed. We have used the CVRPSEP 

package of Lysgaard et al. (2004) to generate SEC. When subtours are 

identified by CVRPSEP, their corresponding SEC are added to the search 

tree. This process is repeated until a feasible or dominated solution is found, 

or until there are no more cuts to be added. At this point, a new subproblem is 

generated by branching on a fractional vari-able, and the model is reoptimized 

in a new node. We provide a scheme of our branch-and-cut algorithm on 

Algorithm 1. 
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Algorithm 1  Pseudocode of the proposed B&C algorithm.   

1: At the root node of the search tree, generate (1)– (13), 

(15)–(42) and all valid inequalities (44)–(54), (57)–(60). 
 

2: Solve the linear problem (LP) relaxation of the node. 

 

3: Termination check: 

4: if there are no more nodes to evaluate then 

5: Stop. 
6: else 

7: Select one node from the B&C tree. 

8: end if 

9: while the solution of the current LP relaxation contains 
subtours do  

10: Add violated subtour elimination constraints. 

11: Solve the LP relaxation of the node. 

12: end while 

13: if the solution of the current LP relaxation is in-teger then 

 

14: Go to the termination check. 

15: else 

16: Branch on one of the fractional variables. 

17: Go to the termination check. 

18: end if 

 

 

5. Matheuristic-based adaptive large neighborhood search 

algorithm  
 

Since the 2E-IRPFM generalizes the vehicle routing problem (VRP), it is 

N P-hard and traditional exact methods, like B&C al-gorithms, can solve only 

small size instances. To handle large in-stances, we propose a matheuristic 

approach, combining math-ematical programming techniques with heuristic 

search proce-dures. Matheuristics are widely used to solve routing prob-lems 

(see Archetti and Speranza, 2014). In particular, Archetti et al. (2017) 

combine integer programming with tabu search to solve a multi-vehicle IRP. 

More recently, Bertazzi et al. (2019) pro-pose a matheuristic to solve a multi-

depot IRP. 

 

In the context of the 2E-IRPFM we make use of an adaptive large 

neighborhood search (ALNS) mechanism, responsible for han-dling the 

delivery routes, while pickup, delivery quantities, fleet management, and 

some improvements are determined exactly by mixed integer programming 

(MIP) subproblems. 

 

5.1. ALNS mechanism 

 

The ALNS was proposed by Pisinger and Ropke (2007) to solve the VRP 

and its extensions. In the inventory-routing context, it has since been 

successfully applied to several variants (Aksen et al., 2014; Coelho et al., 

2012a; Coelho et al., 2012b; Guimarães et al., 2019). Our ALNS deals with 

the delivery routes, while de-livery quantities, pickups and fleet decisions are 

determined ex-actly by MIP subproblems. The search procedure follows the 

gen-eral scheme proposed by Pisinger and Ropke (2007) and is divided into 

segments. Given a solution, some customers are either in-serted, removed, or 

swapped among routes at each iteration, by specific operators. Each operator i 

contains three attributes. The first one is the weight, given by ωi, whose 

value depends on past performance. The second attribute is the score, given 

by π i, which quantifies the effect on the solution when the operator is 

applied. It increases by σ 1 if the operator leads to a new best solution, by 

 

 

σ 2 if it finds a solution better than the current one, and by σ 3 if the solution is 
worse but is still accepted according to a simulated annealing criteria; the third and 

last attribute is ς ij, which mea- 

 

sures the number of times the operator i has been applied in the last segment j 

∈ . 

Following the original ALNS framework, we adopt a simulated annealing 
acceptance criterion. Let s be a solution and s a neigh-bor solution, obtained 

from s. The acceptance probability of s is e
(z(s)−z(s ))/τ

 , where z( · ) is the 

solution cost and τ > 0 is the current temperature. The initial temperature is τ 

start, decreasing at each iteration by a cooling rate factor φ, with 0 < φ < 1. 
 

In the first iteration, all scores are equal to zero, and all weights are equal 

to one. A roulette wheel mechanism controls the choice of operators. Given h 

operators, operator i is chosen with proba- 

bility ωi/  h ω j . In each segment   , if the operator is chosen, 
  

a reaction j=1  η ∈  
     

 factor  [0, 1] is applied to balance its weight be-  
tween the past and present performance, according to (61). After this step, all 

scores are reset to zero. 

i  = (1 − η)ωi + ηπi/ςi j if ςi j = 0.  

ω :  
ω

i if ςi j = 0 (61) 

 

A neighbor solution s is obtained when an operator is selected and applied 

on s. In the list below, we present the operators de-veloped for our ALNS. 

 

 

1. Randomly remove ρ: It randomly selects a period t, a plant j, a vehicle k 
rented by this plant, and a customer l served from it and removes this 

customer. It is repeated ρ times.  
2. Remove worst ρ: This operator computes the transportation saving of not 

visiting each client served, according to the tri-angle inequality. It is 

applied ρ times, removing, at each time, the customer yielding the highest 

saving.  
3. Shaw removal route based: It randomly selects a period t, a  

plant j, a vehicle k rented by this plant, and a customer l served by this 

vehicle. It then computes the distance min(clu) to the closest customer u 
also being served by the same vehicle, and removes all customers within 2 

min(clu) from customer l.  
4. Empty one period: Randomly selects a period t and removes all its 

deliveries.  
5. Empty one vehicle: Randomly selects a rented vehicle k and re-moves all 

deliveries from all plants in all periods performed by this vehicle. 

 

6. Empty one plant: Randomly selects a plant j and removes all deliveries of 

all vehicles from this plant over the planning hori-zon. 

 

7. Farthest customer: This operator randomly selects a period t, a plant j, 

and a vehicle rented by this plant, and removes its far-thest customer, 

measured by the direct distance from the depot. It is repeated ρ times. 

 

8. Avoid consecutive visits: Starting from t = 1, it removes the second visit 

of all customers receiving deliveries in two consec-utive periods. The 

delivery quantities are updated at each new period analyzed. 

 

9. Remove ρ minimum residual deliveries: This operator calcu-  
lates the residual delivery for all served customers, given by 

qkt 
kt 

 
jl  

Ul −Il
t−1 , with q jl > 0, for each l ∈ C, and removes the customer 

with the minimum residual delivery. It is repeated ρ times.  
10. Remove ρ most visited customers: This operator removes the most visited 

customer over the planning horizon. Ties are bro-ken randomly. It is 

repeated ρ times.  
11. Randomly insert ρ: Randomly selects a period t, a plant j and a vehicle k 

rented by this plant, and inserts a randomly selected customer l unserved 

in t, following the cheapest insertion rule. The operator is repeated ρ 

times.  
12. Insert best ρ: Similar to Remove worst ρ, this operator inserts the 

customer with the smallest increase in transportation cost. It is repeated ρ 
times. 
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13. Assignment to the nearest plant: This operator randomly se-lects a period 

t and a customer l not served in that period, and inserts it on the route of 

its nearest plant, following the cheap-est insertion rule. It is repeated ρ 

times.  
14. Shaw insertion: This operator randomly selects a period t and a customer l 

not served in t. Then it is computes min(clv), with v ∈ V . All customers 

not yet served in that period, distant up to 2 min(clv) are inserted in a 

rented vehicle k in t, following cheapest insertion rule. It is repeated ρ 

times.  

15. Swap ρ customers: Randomly selects two customers served by different 

vehicles and swaps their assignments. It is repeated ρ times. 

 

16. Swap ρ customers inter-routes: Randomly selects two cus-tomers served 
by the same plant in different vehicle routes in a given period t, and swaps 
their assignments. The insertion fol-lows the cheapest rule. It is repeated 
ρ times.  

17. Swap ρ customers intra-plants: Randomly selects two cus-tomers served 

by different plants in a given period, and swaps their assignments, 

following the cheapest insertion rule. It is re-peated ρ times. 

 
5.2. MIP subproblems 

 
Our matheuristic scheme exploits the solutions obtained from three MIP 

subproblems. These MIPs provide an initial solution for the 2E-IRPFM, 

which is polished and improved by our ALNS opera-tors, by a solution 

improvement procedure, and finally by a general route improvement 

procedure. 

 
5.2.1. Initial solution procedure  

The initial solution procedure (ISP) simplifies the 2E-IRPFM model, 

disregarding route decisions. To this end, all deliveries are scheduled based 

on direct links between plants and customers, while minimizing pickups, 

inventory holding, and fleet manage-ment costs. After we identify all 

customers served for each vehicle in each period t, the visiting sequence is 

determined as a traveling salesman problem (TSP). We employ the branch-

and-cut technique proposed by Padberg and Rinaldi (1991). The decision 

variables are precisely the same of the 2E-IRPFM formulation, except for 

route variables y. The ISP model is formulated by: 
 

min t   
j 

 k  fwWj
kt

 +  j k  fsS
kt

j 
+

 
j  h j I

t
j + l  hl Il

t 

          
 ∈T   ∈P  ∈K     ∈P  ∈K    ∈P   ∈C  

+ k  (i, j)  2ci j Xi
kt

j + j  k 
l 

c jlYjl
kt 

   (62) 

          
  ∈K   ∈E    ∈P  ∈K  ∈C        
subject to (2)–(12), (15)–(40) and to: 

 

by removing or inserting delivery customers, scheduling pickups, and 

swapping customers among routes. Since a destroy ALNS op-erator may 

yield an infeasible solution, the insertion mechanism embedded in our SIP 

can recover feasibility. The parameters used are presented as follows. 

 

• a
kt

jl : routing reduction cost if customer l is removed from ve-hicle k 

rented by plant j in period t, where Yjl
kt

 = 1. This cost follows the 

cheapest removal rule.  

• b
kt

jl : routing cost if customer l is inserted in the route of vehicle k rented 

by plant j in period t, where Yjl
kt

 = 0. This cost follows the cheapest 

insertion rule.  

• ψ kt
jl : a binary parameter equal to 1, if customer l is served in the current 

route of vehicle k rented by plant j in period t, where Yjl
kt

 = 1, 0 otherwise. 

 

Our SIP model keeps all decision variables from the 2E-IRPFM, except 

for the y routing variables. Also, visiting customer variables Y are replaced by 

the following new ones: 
 

• δ
kt

jl = 1 if customer l is removed from the existing route of vehi-cle k rented 

by plant j in period t, which obviously has ψ kt
jl = 1, and 0 otherwise; 

 

• ω
kt

jl = 1 if customer l is inserted in the route of vehicle k rented by plant j in 

period t, which obviously has ψ kt
jl = 0, and 0 oth-erwise. 

 

The SIP model is then formulated as: 

min t    
j 

  h j I
t
j 
+

 
l  hl Il

t
 + k  (i, j)  2ci j Xi

kt
j   

         
  ∈T   ∈P   ∈C  ∈K   ∈E   

aktjl δktjl 

 
 + j  k  fwWjkt + fsS

kt
j 
+

 l C b
kt

jl ω
kt

jl − l  C (64) 

               
    ∈P   ∈K       ∈    ∈   

subject to (2)–(9), (11), (15)–(39), and to:    

ωkt
jl ≤ 1 − ψ jl

kt 
j ∈ P, l ∈ C, k ∈ K, t ∈ T   (65) 

δkt
jl ≤ ψ jl

kt    j ∈ P, l ∈ C, k ∈ K, t ∈ T    (66) 

q
kt

jl ≤  ψ jl
kt

 − δkt
jl + ωkt

jl  Ul j ∈ P, l ∈ C, k ∈ K, t ∈ T (67) 
          

l ∈ C, t ∈ 

T 

   

    ψ jl
kt

 − δkt
jl + ωkt

jl   ≤ 1     (68) 
j∈P k∈K 

Yjj
kt ≤ Yjl

kt j ∈ P, k ∈ K, t ∈ T . (63) ψ jl
kt

 − δkt
jl + ωkt

jl ≤ Yj
kt

j j ∈  P, l ∈  C, k ∈  K, t ∈  T (69)  

 
l∈C  

The objective function (62) minimizes the fleet management (rental and 

cleaning), inventory holding, pickup and approximated delivery transportation 

costs, calculated as a direct link cost cjl, be-tween customer l and plant j. 

Constraints (63) ensure that each ve-hicle rented by a given plant performs a 

delivery route if at least one customer is served in this period. Valid 

inequalities (47)–(54) and (57)–(60) also apply and the OU policy is handled 

through constraints (43). After solving the ISP, the TSP B&C Padberg and 

Ri-naldi (1991) is solved for each vehicle used in the solution, which already 

respects capacity due to constraints (11). 

 

5.2.2. Solution improvement procedure  
The solution improvement procedure (SIP) plays a central role in the 

optimization process. It first completes an 2E-IRPFM solu-tion, after each 

ALNS iteration, determining fleet assignment, pick-ups, and delivery 

quantities. It can also slightly improve a solution 

 
 

   

j∈P 

δkt
jl + ωkt

jl ≤ Gk ∈ K, t ∈ T (70) 

l∈C   

ωkt
jl , δ

kt
jl ∈ {0, 1} j ∈ P, l ∈ C, k ∈ K, t ∈ T . (71)  

The objective function (64) minimizes the inventory holding, pickups, 

fleet management, removal and insertion costs. Con-straints (65) forbid 

inserting a customer on a route that already serves it, while (66) guarantee 

that a customer can only be re-moved if it is served by the route. Constraints 

(67) link re-moval and insertion variables with quantities delivered. 

Constraints 
 
(68) avoid split deliveries, while constraints (69) enforce the de-parture of a 

given vehicle k rented by plant j, if any customers are  
assigned to it. Constraints (70) limit the total number of removals and 

insertions by a constant G ∈ Z+ . This condition is valid only for deliveries, 

while pickups are free to be optimized. This is less 
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strict than the one used by Guimarães et al. (2019). New variables l ∈ C served by vehicle k rented by plant j in period t, which obvi- 

domain are defined by (71).   ously has Yj
kt

j = 1. If A jkt = ∅, it means that there are no customers 
 The performance of SIP is strongly dependent on G. When G is       kt   

small, feasibility may not be recovered when a destroy operator is being served by that vehicle, i.e., Yj j  = 0. Consider also a new 

applied on the ALNS stage. Otherwise, when its value is large, the set of arcs E jkt ⊆ E , with E jkt = (u, v) : u, v ∈ { j} ∪ A jkt ∪ A
c
jkt  , 

removals and/or insertions on the routes may not lead to any im- where  jkt represents edges adjacent to plant j, the set of cus- 
provement, because of the approximated transportation costs. We 

 E      

c 
 

tomers in the existing routes A jkt , and its complement , where 
consider a dynamic arrangement to set up an appropriate value for 

A jkt 

      c   

G, detailed in Section 5.3. The OU policy is handled through the |A jkt | > 0. We note that the set generated by A jkt ∪ A jkt = C. 

constraints (72). 
    Since all the decisions concerning fleet management, inventory 
    flows, pickup, and deliveries are interdependent, GIRP works as        

kt kt kt kt t 1 

j ∈ P, l ∈ C, k ∈ K, t ∈ T . 
the 2E-IRPFM model, with a much smaller search space. In this 

q
jl ≥  ψjl 

− δ
jl 

+ ω
jl Ul − Il −  sense, removals, insertions, and customers swaps are allowed only 

(72) on established routes, avoiding customers from being served by
 

As a final polishing, each time the SIP model is solved, the TSP new ones. Formally, variables q
kt

jl , Yjl
kt

  and yu
k vjt

  are free to be op- 

procedure is applied to provide an optimal sequence of visits for timized if and only if their associated routes exist, where ( u, v) ∈ 
k jt   

each vehicle route, allowing us to compute the cost of a new solu- 
E

 jkt and |A jkt | > 0. Otherwise, q
kt

jl , Yjl
kt

  and yu v  are set to zero, 

tion exactly.   where (u, v) ∈ E jkt  and when A jkt = ∅.      
        

   The remainder of the 2E-IRPFM formulation is not affected, and 

5.2.3. General improvement routing procedure all other decision variables are free to be optimized. Moreover, 

for a given solution and a positive integer parameter B, we add To  overcome  the drawback arising  from  the  approximated 

transportation costs present in many ALNS operators, we intro- the following constraints to the GIRP model, inspired by the local 

branching constraints of Fischetti and Lodi (2003). 
    

duce a novel way to optimize inventory holding and fleet man-     
            

agement costs, while performing routing improvements consider-   kt 

 

+
 
l∈Ajkt

c 

kt 

j ∈ P, k ∈ K, t ∈ T , |Ajkt| > 0. 

 

ing real transportation costs. This new approach can also be useful 
l∈A

jkt 1 − Yjl Yjl  ≤ B  
for other routing problems.           

(73) 
The general improvement routing procedure (GIRP) can apply           

            

any movement in all existing routes in a given solution (either The left hand side of constraints (73) counts the number of bi- 

a removal, an insertion, or a swap), taking into account the true nary variables exchanging their value with respect to each existing 

transportation costs, unlike SIP. Let A jkt  be the set of customers route from a solution s¯, either from 1 to 0 or from 0 to 1, respec-  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. An example for the general improvement routing procedure (GIRP), before (a) and after (b) all movements. 
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Table 1 

  
 

Algorithm 2  Math-ALNS pseudocode. 
Values of all parameters of the Math-  

1:  Initialize weights to 1 and scores to 0 for all operators; ALNS.  
 

Parameter Value 
  

Number of iterations 1000 

τ start 8000 

φ 0.989 

η 0.8 

 20 

σ 1 10 

σ 2 5 

σ 3 2 

ρ 5, if |C| > 5  
2, if |C| = 5  

 

 

tively. The set of 2E-IRPFM solutions satisfying (73) define the B-OPT 

neighborhood N (s¯, B) of s¯. The neighborhood size B should be properly 

chosen, so that the neighborhood N (s¯, B) must be small enough to be 

explored thoroughly in a reasonable time, but suffi-ciently large to maximize 

the probability of finding solutions better than s¯. Beyond that, we note that 

all valid inequalities (44)–(60) are applicable to GIRP and the OU inventory 

policy is ensured by imposing constraints (43). 

 

Fig.  2  shows  an  example  of  how  the  GIRP  works.  Fig.  2a 

shows a solution for which the sets A11t = {1, 2, 3}, A21t = {7, 8, 9} and A22t 

= {5, 6} represent all customers served by vehicle k = 1 rented by plant j = 1, 

and k = 1 and k = 2 from plant j = 2, re-spectively. Setting B = 2, GIRP is 

able to perform up to two move-ments on each route. As shown in Fig. 2b, 

unserved customer l = 4, and also l = 5 who was served by k = 2 from j = 2, 

are inserted on route k = 1 from plant j = 1. This last insertion removes l = 5 

from k = 2. As customer l = 6 is inserted in route k = 1, these two re-movals 

empty vehicle k = 2, while the removal of l = 8 leads to one insertion and one 

removal in vehicle k = 1 from plant j = 2. Finally, A11t = {1, 2, 3, 4, 5} and 

A21t = {6, 7, 9} are the new sets of customers served in t, while all others A 
jkt = ∅. 

 
 

 
5.3. Math-ALNS general framework 

 
Our Math-ALNS starts by solving the ISP model and all asso-ciated TSPs, 

which provide an initial solution sini. When an ALNS operator is applied on a 

given solution s (sini in the first iteration), a neighboring solution s is obtained 

by solving the SIP model. We initially define G = n + m where n = |P| and m 

= |C|, which guar-antees feasibility is recovered if it was lost by a destroy 
operator.  
While z(s ) <  z(s), G is decreased by one unit until G = 1,  and 
the SIP model is solved after each ALNS iteration. Otherwise, if 

z(s ) ≤ (1 +   )z(s), where ~ U[0.05, 0.15], we accept s  as a new 
 { 

ξ ∗ (n + m), 1 
} 

incumbent solution. Then, we also define G = max , 

with ξ ~ U[0.1, 0.2] and solve SIP once again. After that, all indi-vidual 
routes are optimized by solving their associated TSPs. 

Whenever a new best solution sbest is found, we enumerate all its routes. 

Then, the GIRP model is generated and solved, yield-  
ing s . Due to the critically of neighborhood-size B, we only ac-cept the 

neighbor solution if z(s ) < z(sbest), and then the opti-mization process 

continues. Because of the complexity of SIP and GIRP subproblems, our 

Math-ALNS is executed for about 1000 iter-ations. In order to roughly 

generate this number of iterations, we set τstart = 8000 and φ = 0.989. Scores 

are updated with σ1 = 10, σ2 = 5 and σ3 = 2, and the reaction factor η is set to 

0.8. We de-fine = 20, when weights are updated, scores are set to zero, and the 
value of is redrawn. Table 1 shows the value of all parame-ters of the Math-ALNS. 

A pseudocode of our matheuristic is pro-vided in Algorithm 2. 

~//ALNS  Initialization  
2: Solve ISP and all associated TSPs, yielding sini. ~//initial 

solution 

3:  sbest ← s ← sini; τ ← τstart ; iter = 0; Generate 
;~//parameter  settings 

4: while τ ≥ 0.01 and iter ≤ 1, 000 do 

5: Select and apply an operator i to s; set G = n + m; ~//routing 
perturbation  

6: Solve SIP and all associated TSPs, yielding s ; ~//solution 
reconstruction 

7: if z(s ) < z(s) then 

8: s ← s ; ~//current  solution  assignment 
9: Set G = max{G − 1, 1}; ~//perturbation  polishing 

10: Solve SIP and all associated TSPs, yielding s ; ~//solution 
polishing 

11: if z(s ) < z(s) then 

12: s ← s and go to step (9); ~//new current solution 
assignment 

13: else 

14: if z(s ) ≤ (1 +   )z(s) then 

15: Set G = max{ξ ∗ (n + m), 1} and go to step (10); 
~//perturbation polishing  

16: end if 

17: end if 

18: if z(s) < z(sbest ) then 

19: sbest ← s; ~//best  solution  assignment 
20: πi ← πi + σ1; ~//ALNS  score  operators  update 

21: Solve GIRP, yielding s ; ~//general solution 
improvement 

22: if z(s  ) < z(sbest ) then 

23: sbest ← s ← s  ; ~//best  solution  assignment 
24: end if 

25: Go to step (9); ~//best  solution  polishing 

26: else 

27: πi ← πi + σ2; ~//ALNS  score  operators  update 

28: if z(s ) ≤ (1 +   )z(sbest ) then 

29: Set G = max{ξ ∗ (n + m), 1} and go to step (10); 
~//perturbation polishing  

30: end if 

31: end if 

32: else 

33: if e(z(s)−z(s ))/τ >   , where ∼ U[0, 1] then 
   

34: s ← s ; ~//current solution assignment by simulated 
annealing 

35: πi ← πi + σ3; ~//ALNS  score  operators  update 

36: end if 

37: end if 

38: if (iter  mod = 0 then 
39: Generate , update the weights of all operators and 

 reset their scores; ~//parameter  settings 
40: s ← sbest ; ~//current  solution  assignment 
41: end if 

42: iter ← iter + 1; ~//iteration  update 
 

43: τ ← φτ ; ~//simulated annealing temperature update 
 

44: end while 

45: return  sbest ; 
 

 

6. Branch-and-cut-based ALNS algorithm  
 

During preliminary experiments, we observed that our B&C al-gorithm is 

very effective in solving small size instances, but as ex-pected from an exact 

procedure, the upper bound quality deteri-orates dramatically for medium and 

large instances. On the other hand, our Math-ALNS is very powerful to find 

good upper bounds in very short computing, even for very large instances. 

Based on that, we hybridize a branch-and-cut-based ALNS scheme, which we 
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Fig. 3. Scheme of our H-B&C parallel algorithm. 

 
 

 
name H-B&C, in order to allow B&C algorithm to take advantage of the good 

solutions of our Math-ALNS and vice-versa.  
Employing parallel computing, H-B&C starts from two fronts, one 

solving the pure B&C of Section 4, and the other one exe-cuting our Math-

ALNS described in Algorithm 2. Whenever a new best solution is found by 

one of the algorithms, it is immediately provided to other one. This strategy is 

used to provide better up-per bounds to B&C, especially in large instances. 

Since B&C stops when the optimal solution is found, it avoids wasting time 

explor-ing ALNS neighborhoods over and over again on small instances. The 

algorithm runs until a time limit is reached or an optimal so- 

 
 

 
lution is proved, which characterizes it as an exact method. Fig. 3 illustrates 

the dynamics of the proposed H-B&C algorithm. 

 
7. Computational experiments 

 
All algorithms were coded in C++, executed on a grid of Intel(R) Xeon(R) 

processors at 2.60GHz with up to 16 GB of RAM per node, running in 

CentOS Linux operating system. All MIPs were solved by Gurobi 8.1.0 and 

both pure B&C and Math-ALNS were processed using six threads. After 

preliminary tests, we split the hybrid al-gorithm H-B&C in four threads 

dedicated to B&C front, and two 
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Table 2  
Comparison between B&C and H-B&C on the 2E-IRPFM.  

 
   ML               OU                 

|C| |P| |F| 

                          

B&C      H-B&C     B&C        H-B&C     
                                  

                                   

   OPT SF LB T (s) OPT LB T (s) OPT SF LB T (s) OPT LB T (s)  
                      

5 1 1 16 16 4423.4 0.9  16 4423.4 3.4  16 16 4672.8 1.6  16 4672.8 4.7   
 2 2 16 16 4383.5 375.2 16 4383.5 313.1 16 16 4719.0 363.6 16 4719.0 210.9  

 2 3 16 16 4343.1 225.7 16 4343.1 417.2 16 16 4679.7 232.1 16 4679.7 233.3  

 3 2 14 16 4151.9 1628.4 16 4191.3 1359.1 15 16 4464.8 1276.4 16 4495.1 1024.2  

10 1 1 16 16 6128.4 5.9  16 6128.4 10.0 16 16 6460.1 12.8 16 6460.1 23.6  

 2 2 8 16 5959.7 3823.2 8 5901.6 3731.6 8 16 6268.0 3812.1 8 6237.0 3857.2  

 2 3 8 16 5942.3 3689.3 8 5861.1 3712.1 8 16 6202.9 3773.0 8 6192.5 3814.9  

 3 2 8 16 5646.0 3997.0 8 5650.8 4044.8 8 16 5966.7 3733.5 8 5989.5 3693.4  

25 1 1 16 16 7898.8 128.9 16 7898.8 144.2 16 16 8635.7 479.2 16 8635.7 633.7  

 2 2 8 16 6932.5 4613.3 8 6962.5 4817.4 3 16 7433.2 6803.7 2 7469.8 6966.9  

 2 3 8 16 6940.5 4422.6 8 6938.3 4678.1 3 16 7425.5 6668.5 3 7474.6 6816.3  

 3 2 4 13 6909.5 6536.3 5 6913.1 6534.9 0 13 7368.5 7200.0 0 7404.9 7200.0  

50 1 1 7 16 13239.4 5271.1 7 13317.1 5469.1 0 16 13915.2 7200.0 0 14305.4 7200.0  

 2 2 0 8 10923.4 7200.0 0 10964.5 7200.0 0 11 11549.5 7200.0 0 11750.3 7200.0  

 2 3 0 8 10771.6 7200.0 0 10921.2 7200.0 0 9 11455.2 7200.0 0 11664.6 7200.0  

 3 2 0 8 10891.9 7200.0 0 10928.2 7200.0 0 6 11886.8 7200.0 0 11978.0 7200.0  

 Total  145 229     148       125 231       125        

 Avg    7217.9 3519.9   7232.9 3552.2    7694.0 3947.3   7758.1 3954.9  
                                   

 
 
threads to Math-ALNS front. ISP and SIP are solved to optimality while 

GIRP is executed for 200s. The algorithms ran up to 7200s on each 

experiment. 

 
7.1. Overall results for 2E-IRPFM 

 
We have adapted the 2E-MDIRP instances proposed by Guimarães et al. 

(2019), which were derived from Archetti et al. (2007). Four settings are 

considered: one supplier-one plant, two suppliers-two plants, two suppliers-

three plants, and three suppliers-two plants. The number of customers ranges 

from 5 to 50. Inventory costs and planning horizon make up four groups: low 

inventory cost with three (absH3low) and six (absH6low) periods, and high 

inventory cost with three (absH3high) and six (absH6high) periods. To 

generate a vari-ety of cleaning and rental costs scenarios, we created four ad-

ditional groups: low rental-low cleaning (LRLS), low rental-high cleaning 

(LRHS), high rental-low cleaning (HRLS), and high rental-high cleaning 

(HRHS) costs. We generate a total of 256 in-stances. Due to the 2E-IRPFM 

multi-vehicle topology, we con-sider only the three-vehicle instances from the 

2E-MDIRP, which are available for each plant at the rental company. The pa-

rameters are calculated as follows and all instances and de-tailed results are 

available from https://www.leandro-coelho.com/ two-echelon-inventory-

routing-problem-with-fleet-management/. 

 

 

 

• High rental cost (HR): fw = Q , where ~ U[0.4, 0.6] 

• Low rental cost (LR): fw = Q , where ~ U[0.2, 0.3] 

• High cleaning cost (HS): fs =  Q , where  ~ U[0.3, 0.5] 

• Low cleaning cost (LS): fs = Q , where ~ U[0.1, 0.2] 
 

We start our analysis by presenting the results obtained with the exact 

algorithms. Table 2 shows a comparison between B&C and H-B&C for ML 

and the OU policies. On each supply chain con-sidered, we have 16 instances, 

with four (one instance absH3low, one absH6low, one absH3high, and one 

absH6high) on each fleet management cost combination (LRLS, LRHS, 

HRLS, HRHS). The first three columns describe the supply chain structure, 

where |C|, |P| and |F| represent the number of customers, plants and suppli-

ers, respectively. For each method considered, columns OPT and SF show 

the number of optimal and feasible solutions found. Column \boldmath LB 

presents the average lower bound, while \boldmath T (s) shows the run time.  

 

Table 3  
Average results for B&C and H-B&C to 2E-IRPFM, where B&C found a solution.  

 

|C| SF B&C     H-B&C       
                 

  Z GAP T (s) Z GAP T (s)  
          

5 128 4488.5 0.2  513.0 4488.5 0.0 445.7  
10 128 6520.2 5.3  2855.8 6476.8 5.1 2860.9  

25 122 9138.3 12.5 4587.4 8253.3 8.2 4704.7  

50 82 12092.9 20.3 6958.9 10583.1 8.0 6983.6  

 Avg 8060.0 9.6  3728.8 7450.4 5.3 3748.8  
                 

 

 

 

 

 

Due to the difficulty of the 2E-IRPFM, the performance of the exact 

methods clearly deteriorate as the supply chain structure be-comes more 

complex, especially for the OU policy. Given that the H-B&C gets an initial 

solution from the Math-ALNS front, the algo-rithm finds a solution for every 

instance. Furthermore, H-B&C was able to find three additional optimal 

solutions for the ML policy. With the results of this table, we show that while 

only B&C can be too time consuming for larger instances and even fails to 

find feasible solutions for some of them, the Math-ALNS always finds 

feasible solutions and can obtain good solutions even for very large instances. 

Overall, we show that their combination do not compro-mise the LB quality, 

showing the efficiency of the H-B&C. Indeed, the hybrid method dominates 

B&C, as among the 512 instances evaluated on both policies, H-B&C found 

212 better solutions than B&C and there were 300 ties. 

 

 

We also compare the performance of B&C with H-B&C, on the subset of 

instances where B&C obtained a solution. Table 3 has up to 32 instances on 

each supply chain structure, making up 128 in-stances per row (64 ML and 64 

OU). As observed, H-B&C yielded tighter bounds, in an equivalent running 

time. 
 

Table 4 presents the mean results among 64 instances on each inventory 

policy, for Math-ALNS and H-B&C. As H-B&C took advan-tage from the 

B&C front, it was able to solve small instances in much shorter running time. 

The UBs were equivalent, showing the quality of our heuristic method. 

Considering both inventory poli-cies, we highlight that H-B&C found better 

solutions in 54 cases, against 45 from Math-ALNS. In another perspective, H-

B&C reached the best known solution (BKS) in 467 cases while Math-ALNS 

did in 458, having 51 exclusive BKS, six more than Math-ALNS. 

https://www.leandro-coelho.com/two-echelon-inventory-routing-problem-with-fleet-management/
https://www.leandro-coelho.com/two-echelon-inventory-routing-problem-with-fleet-management/
https://www.leandro-coelho.com/two-echelon-inventory-routing-problem-with-fleet-management/
https://www.leandro-coelho.com/two-echelon-inventory-routing-problem-with-fleet-management/
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Table 4  
Comparison between Math-ALNS and H-B&C on the 2E-IRPFM.  

 
 ML          OU          
             

|C| 
Math - ALNS H-B&C     Math - ALNS H-B&C     
                      

                       

 Z T (s) Z T (s) Z T (s) Z T (s)  
           

5 4335.4 2144.6 4335.4 523.2  4641.6 1807.3 4641.6 368.3  
10 6262.2 2771.7 6263.2 2874.6  6690.3 2860.6 6690.5 2847.2  

25 8081.4 2873.6 8079.0 4043.6  8852.1 3108.1 8860.1 5404.2  

50 12861.3 4388.6 12882.8 6767.3  14289.9 4674.3 14298.4 7200.0  

Avg 7885.1 3044.6 7890.1 3552.2  8618.5 3112.6 8622.7 3954.9  
                       

 
Table 5  
Comparison for inventory policies on BKS  
of the 2E-IRPFM.   

|C| ML OU GAP % 

5 4335.4 4641.6 7.1 

10 6262.2 6688.6 6.8 

15 8070.0 8846.2 9.6  
50 12851.114257.311.0  
Avg7879.78608.58.6  

 

 
Since H-B&C and Math-ALNS reached similar results without a clear 

dominance, all following analyses are performed taking into account the BKS 

on each instance on each inventory policy. 

 
7.2. Cost analysis for 2E-IRPFM 

 
We evaluate the impact of choosing each of the inventory poli-cies from 

the perspective of total cost. As shown in Table 5, impos-ing the OU policy at 

customers increases the total cost in almost 8.6% on average, and its impact is 

greater in more complex sup-ply chain structures. These results are consistent 

with the findings of Archetti et al. (2007) for the basic IRP, Coelho et al. 

(2012a) for multi-vehicle IRP, Coelho et al. (2012b) for the IRP with 

transship-ment, and Guimarães et al. (2019) for the 2E-MDIRP. 

 

Tables 6 and 7 show the portion of the rental and cleaning costs with 

respect to the total costs, allowing to evaluate the ef-fect of supply chain 

complexity on average costs, considering dif-ferent costs combinations (see 

Section 7.1). For the ML policy, it is interesting to observe that in a more 

complex system with more plants and suppliers, cleaning costs are less 

representative. For in-stances with 50 customers, one plant and one supplier, 

the average cleaning costs ranges from 7.9% to 19.5% of the total costs, while 

 

 

for more complex supply chains with 3 plants and 2 suppliers the cleaning 

costs proportion is no greater than 5.3%. This is due to the fact that deliveries 

can be better coordinated among different plants, reducing the need for 

vehicle cleaning. A similar standard can be observed for the OU policy on 

Table 7. By comparing both tables, another interesting point is that the share 

of rental costs does not change among the policies, while cleaning costs are 

not influenced by the complexity of the system. This fact can be ex-plained 

by the loss of delivery flexibility when the inventory policy is more strict. 

 

 

Table 8 shows a sensitivity analysis when the rental and clean-ing costs 

change, with respect to the LRLS case. The total cost in-creases 4.5% (ML) 

and 4.9% (OU) on average, when the cleaning cost changes from low to high. 

Due to the higher coordination, it is relevant mentioning that the system 

complexity can mitigate this variation, especially when instances are large. 

For both policies, the total cost increases around 12% when rental costs shift 

from low to high, and more than 18% when both rental and cleaning costs are 

high. 

 

 

7.3. Fleet management analysis 

 

We start our analysis by evaluating the impact of the fleet management 

decisions. In order to yield comparable data results, we have considered the 

set of 512 instances of the 2E-IRPFM, by fixing the fleet |K| = 3 on each 

plant in t = 1, and also avoid-ing returns over the planning horizon, according 

to the instances adapted from Guimarães et al. (2019). As the variables Wj
k,t

 

are  
all fixed to one, while R

k
j
,t

 are set to zero, ∀t ∈ T , these require-ments 

impose a fixed cost, given by the rental cost times three (the size of fleet) on 

each plant, along the planning horizon. Its important to highlight that the only 

decision that can be taken 

 

Table 6  
Fleet management cost as % of total cost for the ML policy.  

 
   Rental Cost %    Cleaning Cost %    

|C| |P| |F| 

           

LRLS LRHS HRLS HRHS LRLS LRHS HRLS HRHS 
             

5 1 1 5.2 7.2 10.7 10.1  3.4 3.3 3.1 6.6  
 2 2 6.0 7.0 11.1 11.5  1.6 2.8 1.5 3.4  

 2 3 6.1 6.5 10.6 11.2  2.1 3.5 2.0 3.3  

 3 2 6.5 8.7 13.1 12.6  4.0 3.6 3.7 6.2  

10 1 1 10.2 12.0 19.0 19.2  3.1 4.6 2.7 5.3  

 2 2 8.9 10.7 15.8 15.3  2.4 2.6 2.6 4.5  

 2 3 9.0 11.0 16.1 15.6  2.4 2.6 2.8 4.0  

 3 2 8.6 10.1 15.6 15.5  2.8 3.1 3.0 3.6  

25 1 1 13.9 15.7 24.9 22.4  7.8 7.9 6.8 11.7  

 2 2 12.7 19.9 21.9 20.4  6.4 2.9 6.1 7.5  

 2 3 13.8 17.3 22.4 19.6  4.7 4.7 6.1 6.9  

 3 2 12.6 16.9 21.3 21.5  4.9 4.6 5.2 6.7  

50 1 1 19.9 25.1 30.7 26.3  9.2 10.5 7.9 19.5  

 2 2 19.5 21.1 31.7 30.5  6.3 6.2 5.3 6.4  

 2 3 19.2 19.7 33.2 31.9  5.5 7.0 6.0 6.7  

 3 2 19.6 20.2 32.7 31.7  2.9 4.9 2.5 5.3  

 Avg  12.0 14.3 20.7 19.7  4.3 4.7 4.2 6.7  
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Table 7  
Fleet management cost as % of total cost for the OU policy.  

 
   Rental Cost %    Cleaning Cost %    

|C| |P| |F| 

           

LRLS LRHS HRLS HRHS LRLS LRHS HRLS HRHS 
             

5 1 1 6.0 7.7 12.4 11.9  2.1 3.2 2.0 5.8  
 2 2 5.8 7.9 10.1 11.5  2.7 2.8 2.6 4.4  

 2 3 6.5 7.6 9.7 11.1  2.0 3.2 2.7 3.6  

 3 2 7.1 10.1 13.5 12.1  3.7 3.4 3.2 6.1  

10 1 1 9.7 11.3 18.2 18.3  3.2 5.2 2.9 6.5  

 2 2 8.7 10.6 15.5 15.6  2.7 3.0 3.0 4.6  

 2 3 9.0 10.4 16.4 16.4  3.4 2.8 3.1 4.7  

 3 2 8.7 11.1 15.6 15.6  3.5 3.3 3.1 6.2  

25 1 1 14.8 17.0 24.4 22.4  5.7 7.2 4.5 12.4  

 2 2 11.9 16.6 22.0 21.8  6.6 5.6 5.3 7.1  

 2 3 12.5 14.9 21.6 20.4  6.2 4.8 5.3 8.0  

 3 2 12.7 15.9 22.5 21.9  5.4 4.2 5.2 6.8  

50 1 1 22.5 24.6 32.0 29.0  5.6 9.7 4.8 12.2  

 2 2 17.8 20.6 29.0 28.3  5.2 6.6 4.7 9.0  

 2 3 17.8 21.1 30.4 29.7  6.3 7.1 5.7 8.4  

 3 2 18.2 20.5 30.6 29.7  5.1 4.9 4.5 7.8  

 Avg  11.9 14.2 20.2 19.7  4.3 4.8 3.9 7.1  
              

 
Table 8  
Comparison of fleet management costs.  

 
    ML      OU      

 |C| |P| |F| 

             

LRLS %HS %HR %HRHS LRLS %HS %HR %HRHS  
                

5 1 1 4168.7 3.8 7.2 13.4  4395.2 3.1 8.8 13.4   
  2 2 4197.9 2.6 6.1 9.0  4508.8 2.6 6.0 10.0   

  2 3 4171.2 2.4 5.7 8.3  4482.2 2.5 5.8 9.3   

  3 2 3941.8 3.1 8.9 13.3  4217.0 3.1 9.4 13.9   

10 1 1 5693.8 3.9 10.5 16.0  6004.0 4.4 10.0 15.9   

  2 2 5857.7 3.3 9.6 13.7  6282.0 3.0 9.2 13.6   

  2 3 5841.1 2.6 9.7 13.2  6289.7 2.3 9.4 13.2   

  3 2 6105.9 2.8 8.6 11.9  6519.1 3.2 8.6 13.1   

25 1 1 6951.7 9.1 16.1 29.3  7654.7 7.1 16.8 27.4   

  2 2 7201.8 3.9 13.7 21.0  7892.0 5.9 14.0 21.6   

  2 3 7346.2 3.6 11.2 17.7  7941.4 5.1 12.5 18.3   

  3 2 7862.4 4.0 12.2 18.3  8600.8 4.0 13.6 18.8   

50 1 1 11473.9 13.3 16.3 37.4  12771.7 9.8 18.2 31.3   

  2 2 11181.6 5.9 18.8 23.5  12230.5 8.3 18.9 27.2   

  2 3 10980.4 4.7 22.6 27.5  12259.0 6.8 19.3 27.1   

  3 2 11694.7 2.7 18.7 22.9  13011.3 6.3 17.3 24.5   

  Avg  7166.9 4.5 12.3 18.5  7816.2 4.9 12.4 18.7   
                

 Table 9               
 Performance indices without fleet management.         
               

 Average   ML      OU     
               

      No FM FM %  No FM FM %   
            

 Inventory Cost at Plant 63.4 89.5  41.2  62.3 84.3 35.3   
 Inventory Cost at Customer 410.9 379.4  -7.7  696.4 687.8 -1.2   

 Pickup Routing Cost  1063.3 1044.4  -1.8  1065.2 1043.2 -2.1   

 Delivery Routing Cost  4197.8 4342.4  3.4  4463.3 4603.1 3.1   

 Rental Cost   8364 1572.6  -81.2  8364 1696.5 -79.7   

 Cleaning Cost  8.1 461.9  5602.5  11.1 507.7 4473.9   

 Total Cost   14107.5 7890.2  -44.1  14662.3 8622.6 -41.2   

 Deliveries   5.3 4.8  -9.4  5.7 5.1 -10.5   

 Pickups   1.1 1.1  0.0  1.1 1.1 0.0   
                 

 
 
by the plants concerns the vehicle cleaning. When the fleet man-agement 

decisions are taken into account, plants are free to de-cide how many vehicles 

will be rented, kept and returned, up to the limit of three rentals per period. 

This strategy allows to inves-tigate the effects of the fleet management 

decisions in compari-son with a fixed fleet scenario. Table 9 presents the 

average par-tial costs, number of deliveries and number of pickups for all of 

the 512 instances, under the ML and OU policy. In the fixed fleet scenario, 

we observe an increase of 41% on the average inventory cost at the plant for 

the ML policy, and 35% for the OU policy, when the fleet is fully managed. 

Since pickup decisions are de- 

 
 
pendent on the availability of vehicles, plants have fewer options to schedule 

them and tend to maintain higher inventory levels of input. At the same time, 

the inventory average cost at customers is less representative on the total 

average cost when the fleet is fixed, which explains the reduction of this 

partial cost when an outsourced managed fleet is considered. Another point 

we notice is the average decrease on the number of deliveries by around 10% 

for both inventory policies. When vehicles are not fully available and need to 

be rented, deliveries routes tend to be longer and less frequent, which explains 

the increase around 3% on the average deliveries routing costs. In general, 

when fleet management is con- 
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 Table 10                          
 Performance indices without fleet management.                
                           

   GFU       NFU       q/dist        
 

|C| 

                        

  LRLS LRHS  HRLS HRHS LRLS LRHS HRLS HRHS LRLS LRHS HRLS HRHS  
                         

5 0.12 0.12  0.12 0.12   0.70 0.70 0.70 0.70   0.28 0.28 0.28 0.28     
10 0.18 0.18  0.18 0.18   0.77 0.77 0.77 0.77   0.48 0.48 0.48 0.48     

25 0.17 0.17  0.17 0.17   0.79 0.76 0.78 0.75   0.76 0.74 0.75 0.74     

50 0.17 0.17  0.18 0.17   0.76 0.76 0.77 0.76   1.29 1.25 1.30 1.26     

 Avg 0.16 0.16  0.16 0.16   0.76 0.75 0.76 0.74   0.70 0.69 0.70 0.69     
                           

Table 11                          
Performance indices with fleet management.                  

                           

   GFU       NFU       q/dist        
 

|C| 

                        

  LRLS LRHS  HRLS HRHS LRLS LRHS HRLS HRHS LRLS LRHS HRLS HRHS  
                         

5 0.72 0.58  0.75 0.73   0.72 0.72 0.75 0.75   0.28 0.28 0.28 0.28     
10 0.80 0.66  0.83 0.81   0.80 0.80 0.83 0.84   0.48 0.48 0.48 0.48     

25 0.88 0.67  0.91 0.90   0.88 0.86 0.91 0.91   0.72 0.70 0.71 0.68     

50 0.88 0.74  0.88 0.86   0.88 0.87 0.88 0.87   1.27 1.23 1.26 1.19     

 Avg 0.82 0.66  0.84 0.83   0.82 0.81 0.84 0.84   0.69 0.68 0.68 0.66     
                           

Table 12                          
Average fleet usage.                        
                   

Rental Cost |C| Low Cleaning Cost    High Cleaning Cost     Comparative Analysis      
                       

    #W #S #R #(X+Y)  #W #S #R #(X+Y)  % W % S % R % (X+Y)  
Low 5 4.2 2.8 1.7 5.2   5.4 1.3 0.3 5.3   30.5 -51.6 -82.4 0.6    

  10 5.7 3.0 2.0 6.7   7.1 1.3 0.3 6.8   23.2 -56.1 -87.5 0.8    

  25 5.0 3.5 2.4 6.1   6.7 1.3 0.2 6.2   33.1 -63.7 -91.7 1.8    

  50 5.1 2.7 1.6 6.2   6.1 1.3 0.3 6.2   20.3 -51.0 -85.0 0.9    

Avg   5.0 3.0 1.9 6.0   6.3 1.3 0.2 6.1   26.8 -55.6 -86.6 1.0    

High 5 4.0 2.8 1.8 5.1   4.2 2.1 1.0 5.2   5.3 -27.0 -43.5 1.9    

  10 5.5 3.3 2.3 6.5   5.7 2.1 1.1 6.5   4.2 -34.4 -50.9 0.5    

  25 4.8 3.7 2.6 5.9   4.9 2.2 1.2 5.9   1.0 -38.0 -52.9 -0.2    

  50 5.0 2.8 1.8 6.1   5.1 2.0 0.9 6.1   1.7 -28.9 -42.7 0.0    

Avg   4.8 3.2 2.1 5.9   5.0 2.1 1.1 5.9   3.0 -32.1 -47.5 0.5    
                           

 
Table 13  
Average results for strategies: without GIRP, G = 1, and G = m + n.   
           

Strategy Z  %Z T (s) %T (s) 
        

Original Math-ALNS 6740.40 -  3042.64 -   
Without GIRP 6896.16 1.36 2447.89 -19.54  

With G = 1 fixed 6815.99 0.67 2293.73 -24.61  

With G = n + m fixed 6820.80 0.73 2330.68 -23.39  

 

 
sidered, the total average cost decreases by around 40% for both policies. 

 
We also carry out an analysis regarding the performance in-dices. Aiming 

to provide a compact evaluation, we investigate the quantity-distance (q/dist) 

ratio, which computes the volume deliv-ered per distance traveled. Eq. (74) 

shows the index. 

   
t∈T j∈P k∈K l∈C 

qkt  
q   jl  

 =  
  . (74) dist 

 

k jt 

   

cuvyu v 

 

  t∈T j∈P k∈K (u,v)∈E  

 
Table 14  
Average results when removing one ALNS operator at a time.  
 
      

Strategy Z  %Z  
     

Original Math-ALNS 6740.40 -   
Randomly remove ρ 6851.27 0.97  
Remove worst ρ 6880.26 1.26  

Shaw removal route based 6835.58 0.85  

Empty one period 6857.19 1.01  

Empty one vehicle 6811.24 0.65  

Empty one plant 6861.14 1.07  

Farthest customer 6820.22 0.70  

Avoid consecutive visits 6855.08 1.04  

Remove ρ minimum residual deliveries 6804.29 0.59  
Remove ρ most visited customers 6857.80 1.06  

Randomly insert ρ 6828.04 0.80  

Insert best ρ 6856.93 1.03  

Assignment to the nearest plant 6860.57 1.05  

Shaw insertion 6796.66 0.45  

Swap ρ customers 6841.86 0.92  
Swap ρ customers inter-routes 6854.14 1.00  

Swap ρ customers intra-plants 6850.74 0.98  
      

 
As pointed by Song and Savelsbergh (2007), q/dist is not ef-fective to 

measure absolute performance. We then introduce two new performance 

indices, in order to evaluate fleet management strategies among different 

costs combinations. The gross fleet us-age (GFU) shown in (75) computes the 

average occupancy of the rented fleet. The numerator calculates the total 

volume delivered to customers, while the denominator computes the total 

rented ca-pacity. GFU is particularly useful to compute rented fleet idleness, 

derived from delivery and fleet management strategy facing differ- 

ent rental and cleaning costs combinations. 

GFU  qkt (75) 
  jl   

t∈T j∈P k∈K l∈C 

=  

Wjkt   Q  
t∈T j∈P k∈K 

 
Given that rented vehicles can be housed at plants and not be-ing used, the 

net fleet usage (NFU) presented in (76) computes the average occupancy of 

the fleet. Thus, it is possible to split the de- 
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Table 15  
Comparison between B&C from Guimarães et al. (2019), new B&C and H-B&C to 2E-MDIRP, ML policy.   
 |C| |P| |F| B&C Guimarães et al. (2019)   B&C              H-B&C               
                                                

    OPT SF  LB T (s)  OPT SF  LB  T (s)  OPT SF  LB  T (s)   
                             

5 1 1 4 4 3781.5 1.9    4 4 3781.5 1.2    4 4 3781.5 2.7      
  2 2 4 4 3822.5 81.9  4 4 3822.6 52.7  4 4 3822.6 278.4    

  2 3 4 4 3786.2 66.9  4 4 3786.2 57.4  4 4 3786.2 430.3    

  3 2 4 4 3484.6 238.7  4 4 3484.6 478.3  4 4 3484.6 1461.6   

10 1 1 4 4 4897.7 54.1  4 4 4897.7 20.5  4 4 4897.7 48.4    

  2 2 2 4 4661.8 3716.2 2 4 4695.6 4326.9 2 4 4674.5 3734.9   

  2 3 2 4 4702.7 3697.0 2 4 4707.4 3823.5 2 4 4683.8 3644.8   

  3 2 2 4 4421.1 3812.5 2 4 4682.6 5286.7 2 4 4606.9 4120.3   

25 1 1 2 4 5305.0 4314.5 4 4 5403.4 626.7  4 4 5403.4 838.7    

  2 2 0 2 4538.7 7200.0 2 4 4998.0 3862.0 2 4 4951.8 4126.8   

  2 3 1 2 4574.6 6920.0 2 4 4962.2 3854.6 2 4 5012.2 3868.1   

  3 2 0 2 4399.8 7200.0 2 4 4971.2 5521.2 2 4 4899.8 5065.9   

50 1 1 0 2 7365.1 7200.0 0 3 7468.1 7200.0 0 4 7454.8 7200.0   

  2 2 0 0 6500.5 7200.0 0 1 6752.0 7200.0 0 4 6815.2 7200.0   

  2 3 0 1 6693.7 7200.0 0 2 6810.2 7200.0 0 4 6729.9 7200.0   

  3 2 0 0 6143.6 7200.0 0 1 6727.8 7200.0 0 4 6819.6 7200.0   

 Total   29 45          36 55            36 64              

 Avg      4942.4 4131.5     5121.9 3544.5     5114.0 3526.3   
                                               

Table 16                                              
Comparison between B&C from Guimarães et al. (2019), new B&C and H-B&C to 2E-MDIRP, OU policy.               

                                    

 |C| |P| |F| B&C Guimarães et al. (2019)  B&C              H-B&C               
                                                

    OPT SF LB T (s) OPT SF LB T (s) OPT SF LB T (s)   
                           

5 1 1 4 4 3998.2 2.1    4 4 3998.2 2.3    4 4 3998.2 5.3      
  2 2 4 4 4085.4 431.6  4 4 4085.4 416.9  4 4 4085.4 219.6    

  2 3 4 4 4065.7 320.4  4 4 4065.7 319.3  4 4 4065.7 189.6    

  3 2 4 4 3733.4 1057.0  4 4 3733.3 1261.1  4 4 3733.5 778.9    

10 1 1 4 4 5204.2 114.1  4 4 5204.2 33.1   4 4 5204.2 235.2    

  2 2 2 4 4799.2 3700.4  2 4 4927.8 4460.6  2 4 4999.8 3746.3    

  2 3 2 4 4811.2 3801.3  2 4 4933.4 3715.0  2 4 4920.8 3765.6    

  3 2 2 4 4597.9 3647.5  2 4 4817.8 3660.8  2 4 4831.9 3666.6    

25 1 1 1 3 5262.3 5663.3  3 4 5800.4 3462.7  2 4 5767.5 4207.6    

  2 2 0 2 4664.8 7200.0  1 4 5452.7 6453.8  1 4 5317.2 6637.6    

  2 3 0 2 4548.0 7200.0  0 4 5453.1 7200.0  0 4 5408.5 7200.0    

  3 2 0 2 4344.7 7200.0  0 4 5320.9 7200.0  1 4 5297.3 6508.6    

50 1 1 0 1 7773.6 7200.0  0 3 8016.2 7200.0  0 4 8044.7 7200.0    

  2 2 0 0 7034.9 7200.0  0 1 7413.5 7200.0  0 4 7442.8 7200.0    

  2 3 0 0 7178.6 7200.0  0 1 7358.2 7200.0  0 4 7359.7 7200.0    

  3 2 0 0 6627.3 7200.0  0 2 7489.8 7200.0  0 4 7539.1 7200.0    

 Total   27 42          30 55            30 64              

 Avg      5170.6 4321.1      5504.4 4186.6      5501.0 4122.6    
                                                

 
 
livery strategy from fleet management decisions in our analyses. can use the assets with higher efficiency, leading to cost reduction 

       and better logistics activities coordination. 
   qkt  Finally, Tables 12 clarifies the single fleet management deci- 
  

t∈T j∈P k∈K l∈C 
 jl  

sion as cost parameters change. Column #W brings the average of       
NFU 

= 

   

. (76) 
 

    

 
t∈T j∈P k∈K 

Y
j
kt

j Q 

 rentals, #S the average number of cleanings, #R the average return, 

   and #(X+Y) the average pickup plus delivery routes. For low rental 

       and low cleaning cost (LRLS) we observe that five rentals, three 

In Tables 10 and 11, each row reports the average of 128 in- cleanings, two returns and six routes are performed. When clean- 

ing cost switched to high, it becomes more advantageous to keep stances (64 for each  inventory policy), according to the supply  

the vehicles at the plants, instead of returning them. The num- chain structure. As expected, the q/dist index does not reveal any- 

ber of returns is 86.6% smaller than before, and the number of thing distinctive among cost combinations and fleet management. 
cleanings is 55.6% smaller as well. When rental costs are high, the We observed that for large instances, the fleet carries a greater vol- 

cleaning cost is less relevant and the average number of cleanings ume per traveled distance. When the fleet is owned, the GFU is 16% 

dropped 32% when cleaning costs changed from low to high. At the in all cost combinations, which shows an inefficient vehicle usage. 
same time, we observe a decrease in the number of rentals, espe- On the other hand, the occupancy rate measured by NFU goes up 

cially when cleaning costs are high, decreasing from 6.3 on LRHS to 76% for the vehicles used on the deliveries routes. On the fleet 

to 5.0 on HRHS. management context, the clearest conclusion lies on GFU and NFU  

comparison on the LRHS combination. We note that the rented  

fleet average occupancy is 66%, but for vehicles actually assigned 7.4. Performance of the elements of the Math-ALNS 

it rises up to 81%. When cleaning cost is low or both are high,  

there is no remarkable difference between GFU and NFU. Overall, We also perform extensive experiments to evaluate the per- 
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by considering the results presented on Tables 9–11, we can high- formance of each element of our Math-ALNS. The experiments 

light that when fleet management decisions are considered, plants were performed with 40 randomly selected instances. Detailed 
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results are available from https://www.leandro-coelho.com/ two-echelon-

inventory-routing-problem-with-fleet-management/. Table 13 shows that 

removing GIRP from Math-ALNS significantly decreases the quality of the 

results of the algorithm by an average of 1.36%, when compared to the results 

of the original Math-ALNS. The update procedure of G in SIP is also 

verified: setting a fixed value G = 1 or G = n + m also deteriorates the results 

by 0.67% and 0.73%, respectively, while the processing time decreases 

between 20% and 25% in comparison with the original Math-ALNS. 

 

Table 14 evaluates the performance of the algorithm when each ALNS 

operator is removed. To this end, we have run the algorithm 17 times, each 

time removing one of the operators. As can be seen in the table, each removal 

led to a deterioration in the quality of the results. On average, the removal of 

one operator decreases the quality of the solution by almost 1%. These 

experiments demon-strate that although the algorithm contains many 

elements, all of them contribute to the overall results we achieve in this very 

chal-lenging problem. 

 

 

7.5. Results for the 2E-MDIRP 

 

We have also compared the performance of our methods on in-stances 

proposed by Guimarães et al. (2019) for the 2E-MDIRP. We assessed all 64 

instances with three vehicles and solved them un-der the ML and the OU 

policies on the second echelon, making a total of 128 experiments for each 

algorithm. 
 

The mathematical model proposed in Section 3 is flexible enough to 

handle all 2E-MDIRP features. To this end, it is sufficient set to zero all of 

fleet management costs, i.e., fs = 0 and fw = 0. We highlight that all valid 

inequalities (44)–(60) and the OU pol-icy (43) apply to both problems. 

 

Guimarães et al. (2019) proposed an asymmetric formulation for the 2E-

MDIRP, employing symmetry breaking constraints. Our formulation is subtly 

different, since we consider edge (i, j) only if i < j. This reformulation is 

useful to enable direct deliveries through a single-edge, which substantially 

reduces the number of decision variables, before the search tree is structured. 

In addition, we propose a new set of valid inequalities (58)–(60). Therefore, 

we are able to analyze the performance of the B&C and H-B&C, derived 

from this new formulation, against the B&C proposed by Guimarães et al. 

(2019). 

 

Table 15 shows a comparison among exact algorithms for the ML policy. 

We highlight that our B&C was able to find a solu-tion to all instances up to 

25 customers, and 36 optimal solutions were proved, with seven new ones. 

Our B&C and H-B&C had an equivalent performance in this regard, but H-

B&C obtained tighter bounds. Analogously, Table 16 presents the results to 

OU policy, with similar performance. 

 
To handle large instances, Guimarães et al. (2019) designed a matheuristic 

under the ALNS mechanism. Although we follow a similar way, our Math-

ALNS embeds reformulated MIPs. The main innovation lies in the GIRP 

model, which has a neighborhood ex-ploration strategy based on real 

transport costs (see Section 5.2.3). Table 17 compares our Math-ALNS and 

the matheuristic from Guimarães et al. (2019). Each row shows the average of 

six-teen instances, four instances (absH3low, absH6low, absH3high, and 

absH6high) on each supply chain structure (one supplier one plant, two 

suppliers two plants, two suppliers three plants, and three suppliers two 

plants). For each inventory policy, columns Z Guimarães et al. (2019) and T 

(s) Guimarães et al. (2019) show the average results for total cost and 

processing time for the matheuristic of Guimarães et al. (2019), while our 

Math-ALNS is presented in Z and T (s). The gap between the average total 

cost is  

      ×  
Z[17]   

obtained by 
Z 

− Z[17] 
 

100. As Math-ALNS has been adapted from 
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2E-IRPFM, it preserves the full set of fleet management constraints, 
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requiring more time to solve the associated MIPs. Although the overall 

relative improvement on Z suggests an equivalent perfor-mance, Math-ALNS 

was superior especially on large instances. In general, there was improvement 

in 46 (23 for ML and 23 for OU) out of the 128 instances, with a tie in 81 and 

only one worse re-sult.  

 

8. Conclusions 

 
In this study, we have introduced the 2E-IRPFM, a new vari-ant of IRP 

which incorporates fleet planning in a two-echelon lo-gistics system. This 

problem has a complex many-to-many supply chain structure, where the 

plants are in the middle layer and must control the inventory and routing 

decisions regarding input pickup and final product delivery, while managing 

tactical and operational fleet decisions. We have proposed a MILP 

formulation and a B&C algorithm to solve the problem, taking into account 

different in-ventory policies. We have also designed a matheuristic algorithm 

and an exact hybrid parallel approach to efficiently solve large in-stances. 

Validation experiments, performed on 2E-MDIRP instances from the 

literature, showed that our algorithms are very effective, yielding BKSs for 

the whole set of problems evaluated. We have shown that rentals, cleanings 

and vehicle returns represent a sig-nificant portion of logistics costs. 

Moreover, a more complex logis-tics system proved more resilient regarding 

changing in rental and cleaning costs, leading to greater efficiency in logistics 

operations. 

 
As future directions, we suggest to tackle production features. The blend 

process of commercial gasoline requires certain amount of pure gasoline and 

a complement of ethanol; the decision about when and how much to produce 

of it enriches even more the problem. Besides that, since the octane grade of 

commercial gaso-line is defined according to the portion of ethanol on its 

blend, different products can be considered based on that grade. In this case, a 

multi compartmentalized fleet can also be considered, in order to transport 

different products to different customers. More-over, while rich algorithms 

such as ours allow solving a myriad of intricate problems, the high number of 

parameters remains an is-sue. Further research can be done in automatically 

tuning these parameters or designing simpler algorithms capable of achieving 

of the same quality. 
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